退火重要性采样(AIS)是一种流行的算法,用于估计深层生成模型的棘手边际可能性。尽管AIS可以保证为任何一组超参数提供无偏估计,但共同的实现依赖于简单的启发式方法,例如初始和目标分布之间的几何平均桥接分布,这些分布在计算预算有限时会影响估计性性能。由于使用Markov过渡中的大都市磨碎(MH)校正步骤,因此对完全参数AI的优化仍然具有挑战性。我们提出一个具有灵活中间分布的参数AIS过程,并优化桥接分布以使用较少数量的采样步骤。一种重新聚集方法,它允许我们优化分布序列和Markov转换的参数,该参数适用于具有MH校正的大型Markov内核。我们评估了优化AIS的性能,以进行深层生成模型的边际可能性估计,并将其与其他估计器进行比较。
translated by 谷歌翻译
Several face de-identification methods have been proposed to preserve users' privacy by obscuring their faces. These methods, however, can degrade the quality of photos, and they usually do not preserve the utility of faces, e.g., their age, gender, pose, and facial expression. Recently, advanced generative adversarial network models, such as StyleGAN, have been proposed, which generate realistic, high-quality imaginary faces. In this paper, we investigate the use of StyleGAN in generating de-identified faces through style mixing, where the styles or features of the target face and an auxiliary face get mixed to generate a de-identified face that carries the utilities of the target face. We examined this de-identification method with respect to preserving utility and privacy, by implementing several face detection, verification, and identification attacks. Through extensive experiments and also comparing with two state-of-the-art face de-identification methods, we show that StyleGAN preserves the quality and utility of the faces much better than the other approaches and also by choosing the style mixing levels correctly, it can preserve the privacy of the faces much better than other methods.
translated by 谷歌翻译
通过结合使用卷积神经网(CNN)指定的物理测量模型和学习的图像验证者,对基于模型的架构(DMBA)的兴趣越来越大。例如,用于系统设计DMBA的著名框架包括插件培训(PNP),深度展开(DU)和深度平衡模型(DEQ)。尽管已广泛研究了DMBA的经验性能和理论特性,但当确切地知道所需的图像之前,该地区的现有工作主要集中在其性能上。这项工作通过在不匹配的CNN先验下向DMBA提供新的理论和数值见解来解决先前工作的差距。当训练和测试数据之间存在分布变化时,自然会出现不匹配的先验,例如,由于测试图像来自与用于训练CNN先验的图像不同的分布。当CNN事先用于推理是一些所需的统计估计器(MAP或MMSE)的近似值时,它们也会出现。我们的理论分析在一组明确指定的假设下,由于不匹配的CNN先验,在解决方案上提供了明显的误差界限。我们的数值结果比较了在现实分布变化和近似统计估计器下DMBA的经验性能。
translated by 谷歌翻译
顺序决策的两种常见方法是AI计划(AIP)和强化学习(RL)。每个都有优点和缺点。 AIP是可解释的,易于与象征知识集成,并且通常是有效的,但需要前期逻辑域的规范,并且对噪声敏感; RL仅需要奖励的规范,并且对噪声是强大的,但效率低下,不容易提供外部知识。我们提出了一种综合方法,将高级计划与RL结合在一起,保留可解释性,转移和效率,同时允许对低级计划行动进行强有力的学习。我们的方法通过在AI计划问题的状态过渡模型与Markov决策过程(MDP)的抽象状态过渡系统(MDP)之间建立对应关系,从而定义了AIP操作员的分层增强学习(HRL)的选项。通过添加内在奖励来鼓励MDP和AIP过渡模型之间的一致性来学习选项。我们通过比较Minigrid和N房间环境中RL和HRL算法的性能来证明我们的综合方法的好处,从而显示了我们方法比现有方法的优势。
translated by 谷歌翻译
图表神经网络(GNNS)最近已经证明了在各种基于网络的任务中表现出良好的基于​​网络的任务,例如分散控制和资源分配,并为这些任务提供传统上在这方面挑战的计算有效方法。然而,与许多基于神经网络的系统一样,GNN易于在其输入上移动和扰动,其可以包括节点属性和图形结构。为了使它们更有用的真实应用程序,重要的是确保其稳健性后部署。通过控制GNN滤波器的LIPSChitz常数相对于节点属性来激励,我们建议约束GNN过滤器组的频率响应。我们使用连续频率响应约束将该配方扩展到动态图形设置,并通过方案方法解决问题的轻松变体。这允许在采样约束上使用相同的计算上有效的算法,这为PAC-Sique提供了在GNN的稳定性上使用方案优化的结果提供了PAC样式的保证。我们还突出了该设置和GNN稳定性与图形扰动之间的重要联系,并提供了实验结果,证明了我们方法的功效和宽广。
translated by 谷歌翻译
在本文中,我们评估了基于对抗示例的深度学习的AED系统。我们测试多个安全性关键任务的稳健性,实现为CNNS分类器,以及由Google制造的现有第三方嵌套设备,该模型运行自己的黑盒深度学习模型。我们的对抗示例使用由白色和背景噪声制成的音频扰动。这种干扰易于创建,以执行和再现,并且可以访问大量潜在的攻击者,甚至是非技术精明的攻击者。我们表明,对手可以专注于音频对抗性投入,使AED系统分类,即使我们使用少量给定类型的嘈杂干扰,也能实现高成功率。例如,在枪声课堂的情况下,我们在采用少于0.05白噪声水平时达到近100%的成功率。类似于以前通过工作的工作侧重于来自图像域以及语音识别域的对抗示例。然后,我们寻求通过对策提高分类器的鲁棒性。我们雇用了对抗性培训和音频去噪。我们表明,当应用于音频输入时,这些对策可以是分离或组合的,在攻击时,可以成功地产生近50%的近50%。
translated by 谷歌翻译
非结构化环境中的多步操纵任务对于学习的机器人来说非常具有挑战性。这些任务相互作用,包括可以获得的预期状态,可以实现整体任务和低级推理,以确定哪些行动将产生这些国家。我们提出了一种无模型的深度加强学习方法来学习多步理操作任务。我们介绍了一个基于视觉的模型架构的机器人操纵网络(ROMANNET),以了解动作值函数并预测操纵操作候选。我们定义基于Gaussian(TPG)奖励函数的任务进度,基于导致成功的动作原语的行动和实现整体任务目标的进展来计算奖励。为了平衡探索/剥削的比率,我们介绍了一个损失调整后的探索(LAE)政策,根据亏损估计的Boltzmann分配来确定来自行动候选人的行动。我们通过培训ROMANNET来展示我们方法的有效性,以了解模拟和现实世界中的几个挑战的多步机械管理任务。实验结果表明,我们的方法优于现有的方法,并在成功率和行动效率方面实现了最先进的性能。消融研究表明,TPG和LAE对多个块堆叠的任务特别有益。代码可用:https://github.com/skumra/romannet
translated by 谷歌翻译